Stability and Multiple Solutions to Einstein-scalar Field Lichnerowicz Equation on Manifolds
نویسندگان
چکیده
In this paper, we study the stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on compact Riemannian manifolds. In particular, in dimension no more than 5, we can find a different way (comparing with the previous result of Hebey-PacardPollack) by showing that there are at least two positive solutions or a unique positive solution according to the coercivity property of a quadratic form defined by the minimal solution obtained by the monotone method. When the coercive condition fails, we prove a uniqueness result. A positive solution of the Lichnerowicz equation is also found in a complete non-compact Riemannian manifold. Mathematics Subject Classification 2000: 35Jxx
منابع مشابه
A Variational Analysis of Einstein–scalar Field Lichnerowicz Equations on Compact Riemannian Manifolds
We establish new existence and non-existence results for positive solutions of the Einstein–scalar field Lichnerowicz equation on compact manifolds. This equation arises from the Hamiltonian constraint equation for the Einstein–scalar field system in general relativity. Our analysis introduces variational techniques, in the form of the mountain pass lemma, to the analysis of the Hamiltonian con...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملThe Lichnerowicz Equation on Compact Manifolds with Boundary
In this article we initiate a systematic study of the well-posedness theory of the Einstein constraint equations on compact manifolds with boundary. This is an important problem in general relativity, and it is particularly important in numerical relativity, as it arises in models of Cauchy surfaces containing asymptotically flat ends and/or trapped surfaces. Moreover, a number of technical obs...
متن کاملScalar Laplacian on Sasaki - Einstein Manifolds
We study the spectrum of the scalar Laplacian on the five-dimensional toric Sasaki-Einstein manifolds Y . The eigenvalue equation reduces to Heun’s equation, which is a Fuchsian equation with four regular singularities. We show that the ground states, which are given by constant solutions of Heun’s equation, are identified with BPS states corresponding to the chiral primary operators in the dua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011